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Achtergrond: Mijn belangstelling voor algoritmes voor combinatorische
optimalisatie komt op de eerste plaats door mijn jarenlange samenwerk-
ing met Lawrence J. Hubert (University of Illinois at Urbana-Champaign)
en Phipps Arabie (Rutgers University, Newark). Toen ik in 1994 een
NWO-PIONIER subsidie kreeg, werd Bart Jan van Os een van mijn pro-
movendi. Omdat hij een uitzonderlijk talent voor het ontwerpen en imple-
menteren van algoritmes bleek te hebben, richtte het onderwerp van zijn
proefschrift zich al gauw op globale optimalisatie d.m.v. dynamisch pro-
grammeren. Elise Dusseldorp, ook uit het PIONIER-project, promoveerde
op het onderwerp regressiecbomen. Omdat ik mijzelf met toepassingen van
ensembles van kleine regressiebomen had beziggehouden, kwam het idee
om gezamenlijk aan globaal optimale regressiecbomen te werken bijna als
vanzelf.

Tijdens het schrijven van zijn proefschrift heb ik Bart Jan aangeraden
om een kursus bij Jan Karel Lenstra, toen nog in Eindhoven, te volgen.
Jan Karel vertelde mij bij een latere gelegenheid dat hij nogal verbaasd
was geweest om een promovendus uit de Faculteit Sociale Wetenschappen
te Leiden in zijn collegezaal te zien. Nu vormden wij inderdaad een bi-
jzondere groep binnen de FSW: de Facultaire vakgroep Datatheorie (het
geesteskind van John P. van de Geer, de vader van Sara). Nadat een verre-
gaande integratie van de Datatheoriegroep binnen een FSW departement
mislukt was, kwam ik zelf tot mijn grote vreugde bij het Mathematisch In-
stituut terecht. Het artikel over optimale regressiebomen was echter nooit
afgekomen. Na de uitnodiging om een bijdrage te leveren aan dit Liber
Amicorum, kreeg ik het idee om het artikel ter ere van Jan Karel af te
maken. Alleen bleek het toen als bijdrage aan het Liber veel te lang te
zijn geworden. Daarom hier nu een sterk ingekorte impressie van ons werk,
dat hopelijk te zijner tijd elders in volledige vorm gepubliceerd zal worden
(maar in ieder geval al te lezen is op www.math.leidenuniv.nl/~jmeulman).
Wij danken hierbij Jan Karel voor zijn inspiratie.

*Jacqueline Meulman is Professor of Applied Statistics, Department of Mathematics,
Leiden University, The Netherlands (e-mail: jmeulman@math.leidenuniv.nl), Elise Dus-
seldorp is Statistician, TNO Quality of Life Research, Leiden, The Netherlands (e-mail:
elise.dusseldorp@tno.nl) and Bart Jan van Os is Statistician, 4os Consultancy, The Nether-
lands (e-mail: advies@4os.nl). This paper is based on work first presented in the PhD thesis
Dynamic Programming for partitioning in multivariate data analysis by Bart Jan van Os,
Leiden 2001, under supervision of Jacqueline J. Meulman and Lawrence J. Hubert.
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1 Introduction

Although trees were introduced for the first time by Morgan and Sonquist (1963)
in a method called Automatic Interaction Detection, the methodology was only
fully developed in Breiman, Friedman, Olshen, and Stone (1984). Their CART
algorithm complemented regression trees for the prediction of a continuous out-
come variable, with classification trees that deal with a categorical (nominal)
outcome variable. Since then a number of different methods and software pack-
ages have become available (for an overview, see Hand (1997)), especially af-
ter trees obtained renewed interest by research in data mining methods. The
methodology has become popular for several reasons: trees automatically se-
lect predictors and find complicated interaction effects in the presence of noise
variables, they deal with missing data without having to resort to imputation
methods, and they can handle a large number of predictors of different measure-
ment level (numeric, ordinal, binary and categorical variables are all handled
with equal ease). Trees are immune to the effects of extreme outliers among
the predictor variables, and are invariant to the scaling of predictors or any
monotone transformation of them. Finally, a fitted tree mimics the way a hi-
erarchically nested set of decision rules can be represented, and therefore has a
clear interpretation.

Despite their success, trees are also known to have a major drawback: their
limited prediction accuracy in applications, due to their instability. Instability
means that a small change in the data can result in a very different tree, and the
latter makes the interpretability unreliable. Because of the hierarchical nature
of the process, the effect of an error in the top split is propagated down to all
of the splits below it, and this constitutes an inherent instability (Hastie, Tib-
shirani, and Friedman (2001), p. 274). Therefore various approaches have tried
to extend greedy algorithms, with successful advancements obtained by com-
bining multiple tree structures in ensembles, obtaining a stronger predictor or
classifier. Examples are Boosting (Freund & Schapire, 1996; Drucker & Cortes,
1996; Friedman, 2001), Bagging (Breiman, 1996), Random Forests (Breiman,
2001) and Rule Ensembles (Friedman & Popescu, 2008), which are competi-
tive with other predictive learning methods such as Support Vector Machines
(Vapnik, 1996), Kernel methods and local regression (see Loader, 1999), and
Neural Networks (see Ripley, 1996).

Unfortunately, the result of an ensemble method is deprived of one of the
most important advantages of a single tree, i.e., its high interpretability. At
the expense of higher prediction accuracy, we lose the representation of the
prediction rules in a simple tree structure. Because prediction using ensem-
ble methods works more or less as a black box, considerable efforts have been
invested to obtain secondary tools for interpretation, such as the importance
of a variable by looking at partial dependence (for example, Friedman 2001).
However, with respect to interpretability, the overview by looking at many
partial dependence plots cannot compete with looking at a single tree. Conse-
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quently, adapting greedy tree methods remains an active domain of research,
also because of their ability to handle large datasets that arise in data min-
ing. Research in this area includes the introduction of more complex splits that
combine several predictors through a discriminant analysis in each node (Loh &
Vanichesetakul, 1988), finding more advanced split rules to overcome variable
selection bias (Loh, 2002), and combining the tree model with standard re-
gression models (Alexander & Grimshaw, 1996; Dusseldorp & Meulman, 2001,
2004; Dusseldorp, Conversano, & Van Os, 2010).

The present paper aims at strengthening tree methods at their heart, i.e.,
at the way trees are constructed (fitted). A major way to remove the inherent
instability, and still to obtain a single tree representation, is to use an algorithm
that finds a globally optimal tree. However, from the early days on, simultaneous
optimization over all possible splits in the complete tree structure has been
considered computationally infeasible. Nowadays, the problem is believed to be
most likely intractable, because parts of the problem and the related problem of
constructing minimum size regression trees from decision tables are proven to
be NP-complete (Hyafil & Rivest, 1976; Naumov, 1994). The effort of finding
a globally optimal tree immediately raises a crucial question: is optimizing the
performance of prediction rules on the training data actually worth the effort,
or does it induce over-fitting so that the expected prediction error (obtained
for the test data) actually increases? We believe that the latter is not the case,
because the algorithm aims at improving the accuracy without increasing the
complexity, or possibly even decreases the complexity.

2 Regression Trees

In regression problems, one has a system consisting of a random “outcome”,
“response”, or “dependent” variable Y and a set of random “explanatory”
,“predictor”, or “independent” variables X = {X;,-- -, X}, where J denotes
the number of predictors. The problem defines a “training” sample, {y;, x;}3
of known values for Y and X, where (y;, x;) links the predictor variables of the
ith object with the ith value of the outcome variable, and where i =1,..., N.
The space spanned by the predictor variables, denoted by X, is called the
measurement space. The regression tree problem consists of finding a set of
rules that partition the measurement space into regions such that within each
region Ry we are able to predict a measurement ; as close as possible to y; for
all objects that are included into that region (for an example, see Hastie et al.
(2001), p. 268). The measurement space representation has the advantage that
it provides a concise description of the regression tree problem as a partitioning
task, and immediately suggests relations to other problems that were solved
globally, such as hierarchical clustering (Hubert, Arabie, & Meulman, 2001;
Van Os, 2001; Van Os & Meulman, submitted). Consequently, the measurement
space representation will be used to present the global optimization approach
and the proposed algorithm.
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2.1 Formal Definition of the Optimal Tree Problem

In the sequel we will show how regression trees can be formulated as a com-
binatorial optimization problem. Without loss of generality we will restrict
ourselves to binary trees.

Each tree results in a partition P of the measurement space X into a num-
ber of |P| regions Ry, € P that correspond to the induced terminal nodes. Let
Q4(X) denote the set of all admissible partitions of the measurement space X
with binary trees of at most K regions (terminal nodes) and depth d, where d
denotes the maximum number of layers from the top to any terminal node in
the tree. Note that the definition of Q4(X) may include additional admissibil-
ity restrictions that are widely applied in tree methods, such as the required
minimum number of observations in a terminal node, or a minimum impurity
criterion that stops further splitting if the value of the loss function (that mea-
sures the discrepancy between the training data and the representation) is close
(or equal) to zero.

We now can formulate regression trees as special cases of the mathematical
problem:

f(y.X)=opt > h(y,X, Ry)
P RreP
subject to
P € Q4(X), (1)
d <D,
P|< K.

The impurity function h(-) can be defined in many ways without violating the
Dynamic Programming principles explained below. For regression trees that
minimize the sum of squared error by estimating a constant aj in each region

Ry, h(-) is defined by
h(y, X, R) = > (y: — ax)*I(x; € Ry), (2)

but h(-) also includes other loss functions such as absolute deviations

h(y,X, Ry) = Z lyi — ax|I(x; € Ry), (3)

or even so-called Treed Regression (Alexander & Grimshaw, 1996) that esti-
mates a simple linear regression model in each region by defining impurity as

Wy, X, Be) = > (yi — (ax + bix))*I(x; € Ry), (4)

i
where by only has one non-zero element corresponding to the best linear pre-
dictor in that region, excluding predictors that are used for splits up to the

particular terminal node. Note that in all these cases the required additional
parameters can be estimated independently from other regions.
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The mathematical problem formulation also explicitly includes two types of
size constraints. The first type of constraint (d < D) imposes the maximum
depth D on the tree, and corresponds to the maximum order of interaction
between predictors (Friedman, 2001). Let an np-split (a new predictor split) be
a split that is defined on a predictor that has not been used in previous splits,
if existing. The maximum order of interaction is then equal to the largest
number of np-splits from the top to any terminal node. The second type of
constraint (|P| < K) imposes a maximum K on the number of terminal nodes
(|P] in the tree. These two restrictions are obviously related by K < 2P, and
only one of the two may be in effect for a given problem. Both constraints
define the admissible mazimum size rather than the required maximum size,
because additional admissibility conditions, such as the minimum number of
observations in a terminal node, may actually prevent larger trees in some
cases. Because in general the best prediction accuracy obtained by the least
complexity of the tree is preferred, the smallest tree that optimizes (1) under
the size constraints is accepted.

Note that in our approach these size constraints do not necessarily have to
be chosen a priori. The mathematical problem (1) is solved for a series of values
for K and D, and fortunately, the algorithm introduced below will provide such
a series of solutions with relatively little additional effort.

3 The Dynamic Programming recursion

To formulate our Dynamic Programming algorithm some more definitions are
needed that take into account the hierarchical nesting of the splits. Let v be
any node (including the root node) of a regression tree T(R) of the complete
measurement space R, and let R’ and T'(R’) denote the region (R’ C R) and
the (sub)tree associated with v; let [(R', s, j) and 7(R’, s, j) be a pair of left and
right functions that split the region R’ into a left and right measurement space
using split s € S;(R’), where S;(R’) denotes the set of admissible splits of R’ by
predictor X;. Furthermore, let h(R’) be a shorthand notation for A(y, X, R’),
and let t(R’) denote the value of the objective function for obtaining a (sub)tree
T(R') for region R’, such that

tR)= > h(Ry). (5)

R eP(R')

Finally, let T*(R') be an optimal (sub)tree and t4(R’) the associated (optimal)
value of the objective function. We have the following principle of optimality
(Bellman, 1957):

Proposition 1 Any subtree T(R') starting at some node v of an optimal tree
T*(R) is itself an optimal tree of the measurement space R associated with its
root mode v.
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PROOF. The objective function can be split into the sum of two parts

t'(R)= > h(R)= > hRy)+ Y. h(Ry), (6)

RLEP(R) Ry, €P(R/) Ry, €P(R—R')

where the first part contains the regions that belong to the subtree T(R’), and
the other part contains all other regions. Hence, we can always replace any
subtree of an optimal tree with a better subtree if that would exist, but this
would contradict the optimality of the original tree T

This particular splitting of the objective function is often referred to as the
separability of the objective function. In this case, it stems from the fact that
we can evaluate the part of the objective function for the subtree independently
from the way in which the tree partitions the rest of the measurement space.

This principle quite naturally leads to a recursion for optimal regression
trees. In fact, the transition from a recursion to a tree and vice versa is so
transparent that trees are often used to explain DP algorithms. Moreover,
these type of recursions for trees are well-known in computer science, where
the classical example is the use of DP for the minimal size “Optimal Binary
Search Tree”, a problem that is not NP-hard, and were DP is very efficient.
In contrast, DP for NP-hard problems is often not considered because of the
explosion of computer resources needed for increasing problem sizes, with the
major exception of Hubert et al. (2001), Hubert, Arabie, and Meulman (2006),
who present DP solutions (and software) for finding exact solutions to a number
of combinatorial data analysis problems.

In formulating the recursion, however, we have to take into account the size
restrictions of the mathematical problem (1) that are implicit in this principle
of optimality. In other words, the principle of optimality only holds if the
size constraints for the subtree conform to the overall size constraints of the
complete tree. To define practical recursions that can readily be converted into
algorithms, it is more convenient to explicitly include the size constraints. For
maximum-depth trees, where only the depth-constraint is imposed, we have the
following recursion:

ty(R) = opt [th_(I(R,s,7)) + 11 (r(R, 5,])]
55

subject to s € Sj(R');7=1,...,J;
ta(R)) = h(R')

ifd=1or

other admissibility restrictions prevent further splitting of R’.

(7)

In words, the process of finding an optimal tree can be described by: i. search
through all possible splits at the current node; ii. for each split, find indepen-
dently an optimal subtree at the left and the right node; iii. a. if a node is
allowed to be split further, the search process is recursively started for this new
node; iv. b. if a node is an end node, we simply use the objective function value
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for this node; v. the objective function value for the current split at the current
node is the sum of the objective function values of the optimal subtrees; vi the
split that results in the best combination of subtrees gives the optimal (sub)tree
at the current node and is returned; vii if the current node is the root node,
we have found the complete optimal tree; otherwise we return to the previous
level in the search.

When we also impose the overall size constraint |P| < K, the recursion
becomes more elaborate, because we generally do not know in advance the size
of the left and the right subtree for any split:

tap(R) = OPIS {t2717kl(l(R/>5>j)) +t271,k7kl (r(R,s,j)
s,k

subject to s € Sj(R');5=1,...,;ki=1,...,k—1;
ta(R) = h(R)

ifd=1ork=1or

other admissibility restrictions prevent further splitting of R'.

(8)

The search process is now extended to not only include an optimal choice of the
split s and the predictor j, but also the optimal split of the size constraint k at
the node into two size constraints k; and k.., k = k; + k, for the left and right
subtrees. Consequently, imposing the size constraint |P| < K additionally to
imposing the depth constraint increases the workload of completely searching
the recursion. For an algorithm that finds optimal trees for a range of size
constraints, however, the recursion can be reformulated such that the number

of possible nodes visited for finding a range of depth-constrained optimal trees
is of the same order of magnitude as for finding a range of both depth and size
constrained trees.

4 Algorithm Implementation

Given the recursions (7) and (8), we can immediately formulate recursive al-
gorithms. For example, Algorithm 4.1 gives a DP algorithm for finding an
optimal maximum-depth tree. This algorithm explicitly uses a heap to store
and retrieve previously searched nodes, and only gives the (optimal) objective
function value of an optimal tree. To retrieve the optimal tree itself, the tuple
(R, (s,7)) that corresponds to the optimal split must be stored in the heap as
well. When the algorithm is finished, a simple recursive routine can restore the
optimal tree by retrieving all optimal (R', (s, j)) from the heap, starting at the
root node for R’, applying the split (s, j) giving R’® and R'("), retrieving the
optimal splits for those measurement spaces, and so forth.

The current algorithm constrains the tree size by maximum depth. For
finding optimal trees with a maximum number of terminal nodes K, we have
to extend the algorithm. Taken the above recursion, a straightforward imple-
mentation is to induce an additional loop that circles over all possible sizes of
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Algorithm 4.1 h <« OPTIMALTREE(R/, d)
Find the minimal objective function value h of the best tree, springing from a
node defined by region R’, with depth d (RECURSIVE)

1: if 3(R’, h) then
retrieve (R', h)
3 elseif (d=1)V (S;(R) =0,Vj) Vv (R is homogeneous enough) then
4 h—nR)
5: else
6: h «— inf
7
8
9

v

for j =1to J do
for s € S;(R') do

: ) — OpTIMALTREE(I(R',s,),d— 1)
10: h(") «— OPTIMALTREE(r(R’,s,5),d— 1
11: h — min(h, A + p("))
12: end for
13:  end for
14:  store (R, h)
15: end if
Ensure: Jh

)

(sub)trees before stepping into a lower level. However, a more efficient approach
is given by Algorithm 4.2 that extends the search by simultaneously searching
at each node for all optimal trees of size one up to K — 1 rather than the opti-
mal tree. To do so, we have to search for all optimal combinations of subtrees
such that 2 < |[P(R'®)| + |P(R'"))| < K, and store the optimal combinations
for all sizes 1,..., K. (The ‘optimal combination’ of size one is no split). The
practical details as well as the limits for using a (partial heap) are discussed in
the full paper. Effective implementations have so far mostly not implemented
a heap, but instead simply fully exploit the recursive algorithm.

5 Discussion

The present paper proposes an exact Dynamic Programming algorithm for find-
ing optimal regression trees, where optimality is defined as the quality of the
predictions at the leaves. DP is often dismissed a priori as a candidate for
such hard problems, because of the enormous computational resources involved.
Practical limitations are indeed imminent, but due to the particular implemen-
tation, our algorithm can find (guaranteed) optimal trees for sample sizes of
about 500 observations and 15 predictors, with a maximum size of the tree,
the depth, of seven. Note that these numbers applied at the time the current
algorithm was implemented, which was some time ago, and a depth of seven is
usually more than sufficient. So ExactTree can find sufficiently large optimal
trees for moderately sized datasets, and thus it can deal with nontrivial statis-
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Algorithm 4.2 H «—OpPTIMALSCTREES(R', d, K)
Find the minimal objective function values H = {hq,..., hg} of all Size Con-
strained trees with number of terminal nodes not exceeding 2, ..., K, springing
from a node defined by region R, with depth d (RECURSIVE)

1. if 3(R/, H) then

2:  retrieve (R, H)

3: else if (d=1)V (S;(R) =0,Yj) Vv (R is homogeneous enough) then
4 hp—h(R)k=1,..., K

5: else

6: H « inf

7 hi— h(R))

8 forj=1to J do

9: for s € S;(R’) do

10: H® — OpTiMALSCTREES(I(R', 5,j),d— 1, K — 1)

11: H) « OpTIMALSCTREES(r(R/, 5,5),d— 1, K — 1)

12: hi — min(h, B + 0 ) k=2, K, and ¥ =1,....k
13: end for

14: end for

15 hgp —min(hy),k=2,....K, and ¥ =1,... )k
16:  store (R', H)

17: end if

Ensure: dH

tical applications in a lot of domains. Moreover, ExactTree can do this while
using a plethora of optimality criteria that are beyond the reach of alternative
strategies such as linear programming and branch and bound; it uses a simple
interface and does not require special expertise of the user (a Matlab version of
the software is available from the third Author).

Our applications so far have shown that using the ExactTree algorithm
indeed improves upon the prediction of greedy methods; compared to the greedy
algorithm, ExactTree both finds smaller trees with similar prediction error,
and larger trees with smaller prediction error (while having a smaller standard
error of the prediction error). These results might indicate that using an exact
algorithm within the bounds of size constraints on the tree structure, indeed
leads to a more stable and accurate estimation of the tree structure without
over-fitting on the training data. Moreover, restricting the search space of splits
for each variable by optimally digitizing the predictors into a moderate number
of categories appears to improve the stability of the prediction (and this seems
to be also true for greedy methods). Further study to confirm these results is
obviously needed.

ExactTree cannot deal with the size of datasets that are common in large-
scale data mining, nor can it be used to replace automatic variable selection in
the presence of a large number of variables. In the latter case, however, it is
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worthwhile to use ExactTree to estimate an optimal tree for given predictors
that were selected by another method. Another application of ExactTree is
as a benchmark tool, for truly evaluating the performance of more elaborate
heuristic approaches as compared to greedy methods. Finally, an obvious ap-
plication of ExactTree would be as a part of a so-called Boosting Algorithm,
such as MART, where the ensemble is made up by many small trees, to obtain
a really strong predictor.
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